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Abstract

As an essential step towards computer creativity, automatic
poetry generation has gained increasing attention these years.
Though recent neural models make prominent progress in
some criteria of poetry quality, generated poems still suf-
fer from the problem of poor diversity. Related literature
researches show that different factors, such as life experi-
ence, historical background, etc., would influence composi-
tion styles of poets, which considerably contributes to the
high diversity of human-authored poetry. Inspired by this, we
propose MixPoet, a novel model that absorbs multiple fac-
tors to create various styles and promote diversity. Based on
a semi-supervised variational autoencoder, our model disen-
tangles the latent space into some subspaces, with each condi-
tioned on one influence factor by adversarial training. In this
way, the model learns a controllable latent variable to cap-
ture and mix generalized factor-related properties. Different
factor mixtures lead to diverse styles and hence further differ-
entiate generated poems from each other. Experiment results
on Chinese poetry demonstrate that MixPoet improves both
diversity and quality against three state-of-the-art models.

1 Introduction
Poetry is one of the most valuable cultural heritages for hu-
man beings. Characterized by its elegant expressions, col-
orful contents and diverse styles, this literary genre appeals
to people across different ages and nationalities. Automatic
poetry generation has attracted growing attention in the past
several years because of its considerable research value in
exploring computer creativity and building humanizing AI,
which could also benefit the construction of intelligent as-
sistants for entertainment and education.

Recent models mainly make efforts and achieve signifi-
cant progress in improving some primary criteria of poetry
quality, such as context coherence (Yan 2016) and topic rel-
evance (Ghazvininejad et al. 2016; Li et al. 2018). However,
beyond these criteria, generated poems still suffer from the
problem of poor diversity.

Intuitively, the fundamental requirements of diversity in
poetry generation could be two-fold: (1) poems generated

∗Corresponding author: M.Sun (sms@mail.tsinghua.edu.cn)
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Left: an illustration of the poetry spaces on differ-
ent influence factors. Right: two human-authored sentences
(each with two lines) absorbing two factors.

with different topic words should be distinguishable from
each other (inter-topic diversity) and (2) with the same topic
word, the model should be able to generate distinct poems
(intra-topic diversity). Nevertheless, most existing models
fail to meet such requirements since they tend to remember
some common patterns in the corpus and produce repetitive
and generic contents, even with different topic words as in-
put (Zhang et al. 2017; Yi et al. 2018a).

To address this problem, we must figure out what con-
tributes to diversity. Related literature theories demonstrate
that different factors would influence writing manners of
human poets, such as their life experience (Dilthey 1985),
historical background (Owen 1990), school of literary, etc.
These factors lead to differences in thoughts, feelings, and
expressions in poetry composition, which underlie the di-
verse styles of poets and make human-authored poems
highly distinguishable, as observed in (Zhang et al. 2017).
Figure 1 gives an example: under the same topic (the war),
the poem created by a poet who lived in a powerful and
prosperous dynasty tends to express strong confidence and
aspiration; by contrast, the other created by a poet living in
troubled times shows the sorrow and worry of being invaded.
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Inspired by this, we propose a novel model, MixPoet,
which absorbs different influence factors to improve the di-
versity of generated poems. To exploit the underlying prop-
erties of factors, we resort to semi-supervised Variational
AutoEncoder (VAE) (Kingma et al. 2014). We don’t assume
the independence of the latent variable and influence factors
because poetry style is tightly coupled with semantics (Em-
bler 1967). Instead, our model disentangles the latent space
into some subspaces and makes each conditioned on one fac-
tor (together with the keyword) by adversarial training, to
capture and mix generalized factor-related semantics. In the
training phase, our model can predict factors of unlabelled
poems and thus be trained in a semi-supervised manner. In
the testing phase, by specifying different values for each fac-
tor, we can create various mixtures of factor properties that
bring distinctive new styles for generated poems.

With the same given keyword, by manually varying the
mixture, one can create distinct poems that simultaneously
express properties of multiple factors, achieving intra-topic
diversity. With different keywords as input, our model can
automatically infer an appropriate factor mixture for each
keyword and thus generate more distinguishable poems, im-
proving inter-topic diversity.

In summary, our contributions are as follows:
• To the best of our knowledge, we are the first effort at gen-

erating poems that mix the properties of different factors
for the sake of better diversity.

• We innovatively propose a semi-supervised MixPoet
model to disentangle the latent space into different factor-
conditioned subspaces by adversarial training.

• We experiment on Chinese poetry. Automatic and human
evaluation results show that our model can controllably
mix different factors and improve both the diversity and
quality of generated poems, against three current state-of-
the-art models.

2 Related Work

As an important chapter of automatic natural language gen-
eration, poetry generation has interested researchers for
decades. After the early attempt of template-based mod-
els (Gervás 2001), systems based on statistical machine
learning methods, such as genetic algorithms (Manurung
2003) and statistical machine translation approaches (He,
Zhou, and Jiang 2012), make the first breakthrough and gen-
erate barely satisfactory poems.

The past several years have witnessed the rapid progress
of neural networks, which also show notable advantages
in poetry generation. Existing works mainly target at im-
proving some primary criteria of poetry quality. At first,
the Recurrent Neural Network (RNN) is used to generate
fluent poems (Zhang and Lapata 2014; Hopkins and Kiela
2017). After that, pursuing better context coherence, the
Polish model (Yan 2016) embellishes a generated poem
several times. To enhance topic relevance, the Hafez sys-
tem (Ghazvininejad et al. 2016) extracts more related key-
words to bring more abundant topic information; the work-
ing memory model (Yi et al. 2018b) leverages an internal
memory to store and access multiple topic words.

Despite the significant improvement on these criteria,
models mentioned above fail to meet a higher requirement,
the diversity. To handle this problem, the MRL model (Yi et
al. 2018a) uses reinforcement learning to encourage high-
TF-IDF words, which improves inter-topic diversity. The
USPG model (Yang et al. 2018a) generates stylistic poetry
by maximizing the mutual information between styles and
poems, which promotes intra-topic diversity. Since USPG
is trained in an unsupervised manner, the learned styles are
indistinguishable and uninterpretable.

VAE has recently proven to be effective for generat-
ing various types of text (Zhao, Zhao, and Eskenazi 2017;
Zhang et al. 2016). Related to our work, Yang et al. (2018b)
use VAE to learn a context-conditioned latent variable for
poetry generation. Hu et al. (2017) suppose the indepen-
dence of latent space and attributes to generate single sen-
tences but without constraints on semantics. Li et al. (2018)
use adversarial training to match generated poems and given
titles to strengthen topic relevance.

Our motivation and method considerably differ from these
works. For better diversity, we apply adversarial training to
the latent space (instead of explicit poems) and disentan-
gle it into factor-conditioned (neither factor-independent nor
context-conditioned) subspaces to involve various styles and
generate diverse poems under the control of both required
topic and factors. Besides, our model is semi-supervised and
can be trained well with a fraction of labelled data.

3 Model

Before detailing the proposed MixPoet, we first formalize
our task. Define x as a poem with n lines x1, x2, . . . , xn,
each line with li words as xi = xi,1, xi,2, . . . , xi,li , and w
as a keyword representing the main topic. Suppose there
are m factors, y1, . . . , ym. Since influence factors are quite
complicated concepts, to simplify the problem, we discretize
each factor yi into ki classes. By specifying different classes
(values) for each factor, we can create

∏m
i=1 ki factor mix-

tures, with each leading to a new distinctive style. As poems
with manually annotated factor labels are rare, we also uti-
lize unlabelled data and define pl(x,w, y1, y2, . . . , ym) and
pu(x,w) as the empirical distributions over labelled and un-
labelled datasets respectively. Our goal is to generate poems
which are relevant to w on topic and concurrently accord
with the mixed factors on style.

3.1 Basic Generator

We first present a basic generator, one of our baselines,
which is also a part of MixPoet. We adopt an effective struc-
ture similar to that in (Yan 2016; Yi et al. 2018a).

Define si,j as the corresponding GRU (Cho et al. 2014)
decoder hidden state. Then the probability distribution of
each xi,j to be generated is computed as:

si,j=GRU(si,j−1, [e(xi,j−1); gi−1]), (1)
si,0 = f(e(w), oi), (2)
p(xi,j |xi,<j , x<i, w)=softmax(f(si,j)), (3)

where [; ] means concatenation; e(·) represents the embed-
ding; x<i is the abbreviation of x1, . . . , xi−1 (similar to
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Figure 2: A graphical illustration of MixPoet. The latent
variable is sampled from the posterior distribution for train-
ing and from the prior one for testing.

xi,<j); oi is a special length embedding (Yi et al. 2018b)
to control the length of each line; f is a non-linear layer.
gi−1 is a context vector to record so-far generated content

in a poem and provide global information for the generator,
which is used to keep context coherence and computed as:

ai,t = f([si,t; . . . ; si,t+d−1]), (4)

gi = f(gi−1,
∑

t

ai,t), g0 = 0, (5)

where 0 is a zero vector and d is the window size.

3.2 Semi-Supervised Conditional VAE

We introduce the semi-supervised framework of our model,
which is adopted in our previous work (Chen et al. 2019).
We first give the formalization based on a single factor y for
brevity and will incorporate more factors later.

Aiming at learning the conditional joint distribution
p(x, y|w), we can involve a latent variable z and have
p(x, y|w) =

∫
p(x, y, z|w)dz. Since style is coupled with

semantics as mentioned in Sec. 1, rather than suppose the
independence of z and y, we decompose p(x, y, z|w) as
p(x, y, z|w) = p(y|w)p(z|w, y)p(x|z, w, y). Such decom-
position indicates how a poem is generated: if the user
doesn’t provide any label, the model predicts an appropri-
ate factor class by the keyword, then draws a sample of z
according to the required topic (w) and factor (y), and fi-
nally generates a poem (x). During this process we could
manipulate both the topic and style of generated poems by
separately specifying the keyword and factor class.

Then for labelled data, we can derive the lower bound:
Eqφ(z|x,w,y)[log pψ(x|z, w, y)]
−KL[qφ(z|x,w, y)||pθ(z|w, y)]
+ log pω(y|w) = −L(x, y, w) ≤ log p(x, y|w),

(6)

where we approximate the true prior distribution p(z|w, y)
and posterior distribution q(z|x,w, y) with a prior network
pθ(z|w, y) and a recognition network qφ(z|x,w, y) respec-
tively. θ and φ are corresponding parameter sets.

By optimizing Eq.(6), we reconstruct the poem x, and
minimize the KL divergence of the posterior and prior dis-
tributions. Besides, we also incorporate a classifier pω(y|w)
to predict appropriate factor classes when the user doesn’t
provide any label. ω represents the parameters of classifiers.

Since the labelled data is too limited to train the model
well, as (Kingma et al. 2014), to utilize unlabelled poems,
we treat the unobserved y as another latent variable. In a
similar vein, we can derive and maximize:

Eqω(y|x,w)[−L(x, y, w)]+H(qω(y|x,w))
=−U(x,w) ≤ log p(x|w), (7)

where another classifier qω(y|x,w) is trained to infer classes
for unlabelled poems with Gumbel-softmax (Jang, Gu, and
Poole 2017) during the training process.

Ultimately, the total semi-supervised loss is:

L = Epl(x,w,y)[L(x, y, w)− α ∗ log qω(y|x,w)]
+ β ∗ Epu(x,w)[U(x,w)],

(8)

where we also add the classification loss to the first term to
train the classifier qω(y|x,w) utilizing both supervised and
unsupervised signals. α and β are hyper-parameters.

Figure 2 diagrams our model. In detail, we take the
whole poem x as a long sequence and feed it into a bidi-
rectional GRU. Then we concatenate the last forward and
backward hidden states to form h, the vector representa-
tion of x. The classifiers are implemented with Multi-Layer
Perceptron (MLP): pω(y|w) = softmax(MLP (e(w)))
and qω(y|x,w) = softmax(MLP (e(w), h)). We refer to
pψ(x|z, w, y) as the decoder (parameterized by ψ), which is
just the basic generator introduced in Sec. 3.1, except that
we set the initial decoder state as si,0 = f(e(w), oi, z, e(y))
to involve the latent variable and the factor.

3.3 Latent Space Mixture

The formulas above only focus on a single factor. To incor-
porate m factors, we can assume that the latent space can
be disentangled into m subspaces z = [z1; · · · ; zm]. With-
out loss of generality, we give the formulation when m=2.
By further assuming the independence of influence factors
and the conditional independence of these subspaces, we
have p(z|w, y) = p(z1|w, y1)p(z2|w, y2). Accordingly, we
need to replace the classifiers in Sec. 3.2 with pω(y1|w),
pω(y2|w), qω(y1|x,w) and qω(y2|x,w) to predict y1 and
y2 respectively. This disentanglement indicates that we can
independently draw z1 and z2 from corresponding factor-
conditioned subspaces to form the whole latent variable.
That is, we get a latent space which mixes the properties
of different factors. We design two methods to learn such
mixed latent space.

Mixture for Isotropic Gaussian Space We call the first
method MixPoet-IG since we assume the latent variable fol-
lows the isotropic Gaussian distribution as previous related
works (Kingma et al. 2014; Yang et al. 2018b) usually do.

Then we can rewrite the KL divergence in
Eq.(6) as KL[qφ(z1|x,w, y1)||pθ(z1|w, y1)] +
KL[qφ(z2|x,w, y2)||pθ(z2|w, y2)]. Since z1 and z2
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Algorithm 1 Training Process of MixPoet-AUS
1: for number of iterations do
2: Sample labelled batch {x,w, y1, y2};
3: Sample unlabelled batch {x,w} and sample corre-

sponding predicted labels y1 ∼ qω(y1|x,w), y2 ∼
qω(y2|x,w);

4: Sample the posterior latent variable z and the prior
z1, z2 with Eq.(9);

5: Train the four classifiers (ω), recognition network (φ)
and decoder (ψ) in Eq.(8);

6: Train the discriminator (υ) with Eq.(11);
7: Adversarially train the recognition network (φ) and

prior networks (θ) with Eq.(12);
8: end for

also follow the isotropic Gaussian distribution, we im-
plement the recognition networks and the prior networks
with MLP, for example, pθ(z1|w, y1)∼N (μ1, σ

2
1I) where

[μ1; log σ
2
1 ] = MLP (e(w), e(y1)). Then we can analyti-

cally minimize these two KL terms, draw samples of latent
variables with the reparametrization trick (Kingma and
Welling 2014) and train the whole model with Eq. (8).

Adversarial Mixture for Universal Space The second
method is called MixPoet-AUS. Despite the tractability of
computation, the isotropic Gaussian distribution may fail to
learn more complex representations as discussed in (Dilok-
thanakul et al. 2017). We want to only keep the indepen-
dence of z1 and z2 but with the internal dimensions of each
subspace entangled. By this means, the model can learn
more generalized latent representations with enough capac-
ity to hold the broad concepts of influence factors and mean-
while control them independently.

Therefore, we don’t specify any concrete form of the
latent space. Instead, we use a universal approxima-
tor (Makhzani et al. 2015) and make the model learn arbi-
trary complex forms by itself. In detail, for a conditional
distribution q(z|c) with a condition c, we assume:

q(z|c, η) = δ(z −MLP (c, η)), (9)

where η is random noise and δ is the impulse function. By
replacing c with a certain condition (e.g., w, y1) and sam-
pling η ∼ N (0,1) we can get samples of required latent
variables (e.g., z1).

Then we use the density ratio loss (Rosca et al. 2017) to
approximate the KL term as follows:

KL[qφ(z|x,w, y1, y2)||pθ(z1|w, y1)pθ(z2|w, y2)]
= Eqφ(z|x,w,y1,y2)[log

qφ(z|x,w, y1, y2)
pθ(z1|w, y1)pθ(z2|w, y2) ]

≈ Eqθ(z|x,w,y1,y2)[log
Cυ(z, y1, y2)

1− Cυ([z1; z2], y1, y2) ],
(10)

where Cυ is a latent discriminator (parameterized by υ)
which discriminates between latent values sampled from the
posterior distribution and the ones independently sampled
from the two factor-conditioned prior distributions.

# of MC CL Others UNK Total
PT 799 608 675 9,052 11,134
TT 1,481 977 1,122 8,993 12,573

UNK 8,547 9,543 7,654 - 25,744
Total 10,827 11,128 9,451 18,045 49,451

Table 1: Statistics of CQCF. MC: military career, CL: coun-
tryside life, PT: prosperous times, TT: troubled times. ‘Oth-
ers’ means poems that don’t belong to MC or CL. ‘UNK’
means unknown. We detail the collection methodology of
CQCF in the supplementary file.

As in (Mohamed and Lakshminarayanan 2016; Zhao et
al. 2018), we use adversarial training to minimize this ratio
loss which alternately optimizes the discriminator by:

max
υ

Epθ(z1|w,y1)pθ(z2|w,y2)[log(1−Cυ([z1; z2], y1, y2))]
+ Eqφ(z|x,w,y1,y2)[log Cυ(z, y1, y2)],

(11)
and trains the recognition and prior networks by:

max
φ,θ

Eqθ(z1|w,y1)qθ(z2|w,y2)[log Cυ([z1; z2], y1, y2)]
− Eqφ(z|x,w,y1,y2)[log Cυ(z, y1, y2)].

(12)

In this adversarial training, we consider the prior network as
a ‘generator’ and the latent values sampled from the recog-
nition network as ‘real data’ in the standard Generative Ad-
versarial Networks (Goodfellow et al. 2014). The complete
training process is shown in Algorithm 1.

When the discriminator is successfully cheated (Cυ(·) ≈
0.5), the KL divergence can be minimized close to zeros.
In this way, the model learns a sophisticated latent space
and disentangles it into different factor-conditioned sub-
spaces. In Sec. 4, we will show that compared to Mixpoet-
IG, Mixpoet-AUS learns more distinguishable latent repre-
sentations and achieves better diversity.

3.4 Training

For MixPoet-IG, to alleviate the vanishing latent vari-
able problem in VAE training, besides the annealing
trick (Vinyals et al. 2016), we also add a BOW loss (Zhao,
Zhao, and Eskenazi 2017) to Eq.(8) to force z to capture
more global information. For MixPoet-AUS, since the dis-
criminator is a crucial part for adversarial training, we adopt
a powerful projection discriminator recently proposed in
(Miyato and Koyama 2018) and apply the spectral normal-
ization (Miyato et al. 2018) to the discriminator to stabilize
the training process.

4 Experiments

4.1 Data

We mainly experiment on two typical factors: living experi-
ence and historical background. We discretize the first one
into three classes: military career, countryside life and oth-
ers; and the second one into two classes: prosperous times
and troubled times. By mixing these factors, we can create
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Models inter-JS ↓ intra-JS ↓ LMS ↑
fBasic - 9.15% 0.34
Basic 2.58% - 0.31
CVAE 2.34% 38.2% 0.33
USPG 1.89% 5.01% 0.37
MRL 1.28% - 0.33

MixPoet-IG 1.55% 8.35% 0.37
MixPoet-AUS 1.39% 3.73% 0.39

GT 0.12% - 0.68

Table 2: Automatic evaluation results of diversity. inter-JS:
inter-topic Jaccard similarity. intra-JS: intra-topic Jaccard
similarity. For calculating inter-JS, USPG and MixPoet pre-
dict appropriate styles/mixtures in terms of keywords.

Figure 3: Factor control results. We show accuracy and
Macro-F1 under both automatic and human evaluations.

six new styles. Then we build a labelled corpus called Chi-
nese Quatrain Corpus with Factors (CQCF), which contains
49,451 poems, and each poem is labelled on at least one
of the two factors. Statistics of CQCF are reported in Ta-
ble 1. Besides, we also collect a Chinese Quatrain Corpus
(CQC) as unlabelled data which comprises 117,392 poems.
For CQC, we randomly select 4,500 poems for validation
and testing, respectively, and the rest for training. For CQCF,
we use 5% for validation, 5% for testing.

We use TextRank (Mihalcea and Tarau 2004) to extract
keywords from poems to build <keyword, poem> pairs and
<keyword, poem, labels> triplets, as in (Yi et al. 2018a).

4.2 Setups

We set the sizes of hidden state, context vector, latent vari-
able, word embedding and factor embedding to 512, 512,
256, 256 and 64 respectively. The activation function is
leaky ReLU for the discriminator and prior networks and
is tanh for others. d = 3 in Eq.(4); α = β = 1 in Eq.(8).
Adam (Kingma and Ba 2015) with mini-batches (batch
size=128) is used for optimization. To avoid overfitting, we

also adopt dropout and l2 norm regularization. For MixPoet-
AUS, we update the discriminator five times per update of
other parts. We first pre-train our model using both CQC and
CQCF, and then fine-tune it with only CQCF. In testing, we
adopt beam search (beam size=20) and apply explicit con-
straints to the search process to ensure that generated poems
can meet the requirements of rhyme and rhythm. For fair-
ness, all baselines share the same configuration.

4.3 Baselines for Comparisons

We compare the following baselines1:
GT: ground truth, i.e. human-created poems. Basic: the

generator introduced in Sec. 3.1. CVAE (Yang et al. 2018b):
a conditional VAE with a hybrid decoder for poetry gener-
ation. USPG (Yang et al. 2018a): an unsupervised stylistic
poetry generator which supports ten styles and can automat-
ically infer an appropriate style by the input. MRL (Yi et al.
2018a): a reinforcement learning model which achieves the
so-far best inter-topic diversity. fBasic (Wei, Zhou, and Cai
2018): a supervised stylistic poetry generator. We also pre-
train fBaisc with both CQC and CQCF, and then fine-tune it
with CQCF. fBasic takes a straightforward structure, but it
represents the typical supervised paradigm of style control.

4.4 Diversity Evaluation

As in (Yi et al. 2018a), we use Jaccard Similarity (JS) to
evaluate diversity automatically. For inter-topic diversity,
we generate 4,500 poems with different keywords but not
any manually specified style/mixture, and then calculate JS
of them. For intra-topic diversity, we calculate JS of po-
ems generated with the same keyword but different specified
styles. Besides, to prevent these models cheating by produc-
ing ill-formed content, we test the Language Model Score
(LMS) (Yi et al. 2018a) of generated poems. Higher LMS
indicates moderate fluency closer to human-authored poetry.

Table 2 shows that on inter-topic diversity, our model
outperforms most baselines and gets very close to MRL.
Though with distinct keywords as input, most models tend to
generate repetitive phrases (see Figure 5) which inevitably
worsen diversity. MixPoet and USPG incorporate diverse
styles to further differentiate generated poems. However, the
unsupervised design of USPG results in indistinguishable
and uninterpretable learned styles which have no explicit se-
mantic meaning and are too similar. Consequently, even with
fewer styles (3*2 vs. 10), MixPoet still surpasses USPG.

MRL obtains the best inter-topic diversity by penalizing
high-frequency words but fails to achieve intra-topic diver-
sity. If without extra post-processing, MRL (and Basic) can
only generate the same poem by a given keyword (equiva-
lent to intra-JS=100%). CVAE could produce somewhat dif-
ferent poems by utilizing different samples of z, but these
poems heavily overlap with each other (intra-JS=38.2%).
We can also see MixPoet-AUS gets better diversity than
MixPoet-IG, as the former can learn more discriminable la-
tent mixtures, we will analyse more in Sec. 4.7.

1Since our model supports a single keyword, for fairness, we
remove the keyword extension module of CVAE and fBasic.
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Sets Models Fluency Coherence Meaning Aesthetics Relevance Overall Quality

Set 1

Basic 3.00 2.54 2.30 2.71 2.54 2.35
USPG 3.09 2.65 2.61 2.98 2.73 2.63
CVAE 3.34 2.78 2.64 3.13 2.70 2.81
MRL 3.91 3.66 3.36 3.73 3.19 3.55

MixPoet 4.18∗∗ 4.10∗∗ 3.75∗∗ 4.10∗∗ 3.39 3.98∗∗
GT 4.25 4.36+ 4.19++ 4.20 3.99++ 4.25+

Set 2 fBasic 3.26 3.28 2.75 3.25 2.36 2.96
MixPoet 4.08∗∗ 4.28∗∗ 3.85∗∗ 4.12∗∗ 2.92∗∗ 3.96∗∗

Table 3: Human evaluation results of quality. Set 1: poems generated without manually specified mixtures. USPG and MixPoet
infer appropriate labels by themselves in terms of different keywords; Set 2: the ones generated with the six mixtures (we
present the average scores of all mixtures). Diacritic ** (p < 0.01) indicates MixPoet significantly outperforms baseline
models; + (p < 0.05) and ++ (p < 0.01) indicate GT significantly outperforms all models. The Quadratic Weighted Kappa of
human annotations is 0.67, which indicates acceptable inter-annotator agreement.

4.5 Factor Control Evaluation

Compared to USPG and MRL, our model attributes diversity
to the differences of various styles and interprets each style
as a mixture of factor properties. Therefore, we also test if
the generated poems are consistent with given factor classes.

For automatic evaluation, we generate 4,000 poems with
each mixture and different keywords. Then we use a strong
semi-supervised classifier (Miyato, Dai, and Goodfellow
2017), which achieves 0.87 and 0.74 F1 values for the two
factors respectively, to measure the accuracy. For human
evaluation, we generate 20 poems with each mixture (20*6
in total) and invite experts to identify the classes.

As shown in Figure 3, fBasic, the typical supervised
method, performs the worst due to the quite limited and
sparse labelled data. Benefiting from the semi-supervised
structure, our model gets noticeable improvement. More
than 80% and 60% of the generated poems meet specified
classes of the two factors, respectively. Such results mani-
fest that, to some extent, a poem generated by MixPoet can
simultaneously express the properties of multiple factors.

4.6 Poetry Quality Evaluation

Since automatic metrics (e.g., perplexity and BLEU) devi-
ate from the human evaluation manner (Yi et al. 2018a),
we directly adopt human evaluation to assess quality. Fol-
lowing (Yan 2016; Zhang et al. 2017; Yi et al. 2018a), we
consider: Fluency (is the generated poem well-formed?),
Context Coherence (is the poem as a whole thematically
and logically structured?), Meaningfulness (does the poem
convey certain messages?), Aesthetics (does the poem have
some poetic and artistic beauties?), Topic Relevance (is the
poem consistent with the given topic word?) Overall Qual-
ity (the general impression on the poem). Each of the six
criteria is scored on a 5-point scale ranging from 1 to 5.

We use MixPoet-AUS, which achieves better results in
the above assessments, for human quality evaluation and
subsequent analyses and refer to it as MixPoet. Then for
each model, we generate 40 poems with different randomly-
selected keywords. For GT, we choose poems containing
corresponding keywords. Therefore, we get 240 (40*6) po-
ems in total. Then we invite ten experts to evaluate in a blind

review manner. Each poem is randomly assigned to two ex-
perts, and we average the two scores to mitigate personal
biases. We refer to (Zhang et al. 2017; Yi et al. 2018a) for
more details of the evaluation protocol.

As shown in Table 3 (Set 1), MixPoet gets notable im-
provement compared to other models. USPG is only bet-
ter than Basic since it adopts a quite simple structure, even
without any design for Coherence, which severely limits its
performance. CVAE heavily relies on the support of mul-
tiple keywords. With a single keyword, it fails to produce
meaningful contents, while our model can enrich semantic
meanings by the mixed latent space. Despite obtaining the
best inter-topic diversity, MRL may lose control of gener-
ated contents. Merely increasing TF-IDF could incur unex-
pected words digressing from topics and thus hurt quality.

Generally, we can find models achieving better diversity
(MixPoet and MRL) outperform the others by a large margin
since repetitive and generic words can damage poetic images
and aesthetic features of generated poems, indicating that
diversity also plays a crucial role in promoting quality.

It is noteworthy that generated poems take the risk of
straying the given topic when constrained on one single
style, because not all topics are compatible with every style.
Therefore we also assess poems generated in Sec. 4.5. It can
be seen from Table 3 (Set 2) that both fBasic and MixPoet
performs somewhat worse on Relevance. Nonetheless, our
model still gets acceptable results, since it utilizes the mixed
latent space to capture more generalized properties of both
factors and keywords, beyond simple labels.

4.7 Further Analyses

In Figure 4 (a), we visualize points sampled from the prior
distributions conditioned on the six mixtures. We can find
MixPoet-AUS learns more discriminable latent representa-
tions, but Mixpoet-IG fails to distinguish different mixtures.

In Figure 4 (b), we vectorize poems by a neural language
model and visualize them. We can see poems generated by
our model, which mixes two factors (MC&PT), covers and
bridges the two regions of human-authored poems, which
indicates that our model successfully achieves the mixture
not only on the latent space but also on generated poems.

From Figure 4 (c), we can observe that for Basic, CVAE
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Figure 4: (a) Visualization of samples of z conditioned on the keyword ‘spring wind’ and different mixtures. (b) Visualization
of human-created and MixPoet-generated poems. (c) Accumulative frequency of the most frequent k words in generated poems.
(d) Keywords with the highest prediction probability for each mixture.

and USPG, a few most frequent words account for a large
proportion of generated contents, which leads to quite poor
diversity. For instance, the most frequent five words cover
over 10% of all contents generated by Basic. By contrast,
our model alleviates this problem and gets a better balance
in word distribution.

Figure 4 (d) demonstrates the effectiveness of the classi-
fiers involved in our model. We can also find the styles of
mixed factors are expressed through concrete contents (e.g.,
the use of images), which could support our claim that style
is coupled with semantics.

As shown in Figure 5 (a), with two distinct keywords, Ba-
sic generates some repetitive words and even identical whole
lines, causing poor diversity. By contrast, in Figure 5 (b), the
poem generated by Mixpoet with MC&PT expresses great
heroism and confidence in victory, while the other generated
with MC&TT describes a scene of desolation and shows
some loneliness. Besides, in ancient China, some weak dy-
nasties were invaded by northern countries and thus moved
their capitals to the south, with which many refugees also
fled to the south. MixPoet may capture such events that are
widely described by ancient poets and then generates “en-
emy’s warhorses march to the south” in the second poem
(line 2). Though generated using the same keyword, these
two poems present further diversity of thoughts and feelings.

5 Conclusion and Future Work

In this work, inspired by related literature theories, we pro-
pose MixPoet2 to address the problem of poor diversity in
poetry generation. Based on a semi-supervised VAE, our
model disentangles the latent space into different subspaces
with each conditioned on one factor which influences human
poetry composition. In this way, the generated poems can
simultaneously express mixed properties of multiple fac-
tors to some degree. By varying the mixture for the same
keyword or inferring appropriate factor classes with dif-
ferent keywords, our model differentiates generated poems

2MixPoet will be incorporated into Jiuge, the THUNLP online
poetry generation system (https://jiuge.thunlp.cn).

Figure 5: (a) Two poems generated by Basic using different
keywords. Repetitive phrases are marked in red. (b) Using
the same keyword, two poems generated by MixPoet with
different mixtures. Phrases meeting different factor classes
are marked in corresponding colors.

and hence promotes intra-/inter-topic diversity and quality
against three state-of-the-art models.

In the future, we will endeavor to incorporate more fac-
tors, such as love experience, school of literary and gender,
with finer-granularity discretization. We will also consider
modeling the dependence of influence factors, since some
factors may be correlative with each other, e.g., gender and
living experience, and then apply our model to other kinds
of text like story and essay.
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