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Abstract

Poetry is one of the most beautiful forms of
human language art. As a crucial step to-
wards computer creativity, automatic poetry
generation has drawn researchers’ attention for
decades. In recent years, some neural mod-
els have made remarkable progress in this
task. However, they are all based on maximum
likelihood estimation, which only learns com-
mon patterns of the corpus and results in loss-
evaluation mismatch. Human experts evalu-
ate poetry in terms of some specific criteria,
instead of word-level likelihood. To handle
this problem, we directly model the criteria
and use them as explicit rewards to guide gra-
dient update by reinforcement learning, so as
to motivate the model to pursue higher scores.
Besides, inspired by writing theories, we pro-
pose a novel mutual reinforcement learning
schema. We simultaneously train two learn-
ers (generators) which learn not only from the
teacher (rewarder) but also from each other
to further improve performance. We experi-
ment on Chinese poetry. Based on a strong
basic model, our method achieves better re-
sults and outperforms the current state-of-the-
art method.

1 Introduction

Language is one of the most important forms of
human intelligence and poetry is a concise and
graceful art of human language. Across different
countries, nationalities and cultures, poetry is al-
ways popular, having far-reaching influence on the
development of human society.

In this work, we concentrate on automatic po-
etry generation. Besides the long-term goal of
building artificial intelligence, research on this
task could become the auxiliary tool to better anal-
yse poetry and understand the internal mechanism
of human writing. In addition, these generation
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Figure 1: An artistic illustration of our mutual rein-
forcement learning method.

systems are also helpful for electronic entertain-
ments and literary education.

In recent years, neural networks have proven
to be powerful on poetry generation. Some neu-
ral models are proposed and achieve significant
improvement. However, existing models are all
based on maximum likelihood estimation (MLE),
which brings two substantial problems. First,
MLE-based models tend to remember common
patterns of the poetry corpus (Zhang et al., 2017),
such as high-frequency bigrams and stop words,
losing some diversity and innovation for generated
poetry. Moreover, based on word-level likelihood,
two kinds of loss-evaluation mismatch (Wiseman
and Rush, 2016) arise. One is evaluation gran-
ularity mismatch. When evaluating, human ex-
perts usually focus on sequence level (a poem line)
or discourse level (a whole poem), while MLE
optimizes word-level loss, which fails to hold a
wider view of generated poems. The other is cri-
teria mismatch. Instead of the likelihood, humans
usually evaluate poetry in terms of some criteria.
In this work we focus on the main four criteria
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(Manurung, 2003; Zhang and Lapata, 2014; Yan,
2016; Yi et al., 2017): fluency (are the lines fluent
and well-formed?), coherence (is the poem as a
whole coherent in meaning and theme?), mean-
ingfulness (does the poem convey some certain
messages?), overall quality (the reader’s general
impression on the poem). This mismatch may
make the model lean towards optimizing easier
criteria, e.g., fluency, and ignore other ones.

To tackle these problems, we directly model
the four aforementioned human evaluation crite-
ria and use them as explicit rewards to guide gra-
dient update by reinforcement learning. This is a
criterion-driven training process, which motivates
the model to generate poems with higher scores on
these criteria. Besides, in writing theories, writing
requires observing other learners (Bandura, 2001).
It is also shown that writing is supported as an ac-
tivity in which writers will learn from more ex-
perienced writers, such as other students, teach-
ers, or authors (Prior, 2006). Therefore it is nec-
essary to equip generators with the ability of mu-
tual learning and communication. Inspired by this,
we propose a novel mutual reinforcement learn-
ing schema (Figure 1), where we simultaneously
train two learners (generators). During the train-
ing process, one learner will learn not only from
the teacher (rewarder) but also from the other. We
will show this mutual learning-teaching process
leads to better results.

In summary, our contributions are as follows:

• To the best of our knowledge, for the sake of
tackling the loss-evaluation mismatch prob-
lem in poetry generation, we first utilize re-
inforcement learning to model and optimize
human evaluation criteria.

• We propose a novel mutual reinforcement
learning schema to further improve perfor-
mance, which is transparent to model archi-
tectures. One can apply it to any poetry gen-
eration model.

• We experiment on Chinese quatrains. Both
automatic and human evaluation results show
that our method outperforms a strong basic
method and the state-of-the-art model.

2 Related Work

As a desirable entry point of automatic analysing,
understanding and generating literary text, the re-
search on poetry generation has lasted for decades.

In recent twenty years, the models can be catego-
rized into two main paradigms.

The first one is based on statistical machine
learning methods. Genetic algorithms (Manurung,
2003; Levy, 2001), Statistical Machine Transla-
tion (SMT) approaches (He et al., 2012; Jiang and
Zhou, 2008) and Automatic Summarization ap-
proaches (Yan et al., 2013) are all adopted to gen-
erate poetry.

More recently, the second paradigm, neural net-
work, has shown great advantages in this task,
compared to statistical models. Recurrent Neu-
ral Network (RNN) is first used to generate Chi-
nese quatrains by (Zhang and Lapata, 2014). To
improve fluency and coherence, Zhang’s model
needs to be interpolated with extra SMT features
as shown in their paper. Focusing on coher-
ence, some works (Yi et al., 2017; Wang et al.,
2016a) use sequence-to-sequence model with at-
tention mechanism (Bahdanau et al., 2015) to gen-
erate poetry. Wang et al. (2016b) design a special
Planning schema, which plans some sub-keywords
in advance by a language model and then gen-
erates each line with the planned sub-keyword
to improve coherence. Pursuing better overall
quality, Yan (2016) proposes an iterative polish-
ing schema to generate Chinese poetry, which re-
fines the poem generated in one pass for sev-
eral times. Aiming at enhancing meaningfulness,
Ghazvininejad et al. (2016) extend user keywords
to incorporate richer semantic information. Zhang
et al. (2017) combine a neural memory, which
saves hundreds of human-authored poems, with
a sequence-to-sequence model to improve innova-
tion of generated poems and achieve style transfer.

These neural structures have made some
progress and improved different aspects of gener-
ated poetry. Nevertheless, as discussed in Section
1, the two essential problems, lack of diversity and
loss-evaluation mismatch, are still challenging re-
sulting from MLE. Compared to further adjusting
model structures, we believe a better solution is to
design more reasonable optimization objectives.

Deep Reinforcement Learning (DRL) first
shows its magic power in automatic game playing,
such as Atari electronic games (Mnih et al., 2013)
and the game of Go (Silver et al., 2016). Soon,
DRL is used to playing text games (Narasimhan
et al., 2015; He et al., 2016) and then applied to
dialogue generation (Li et al., 2016b).

From the perspective of poetry education, the
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teacher will judge student-created poems in terms
of some specific criteria and guide the student to
cover the shortage, which naturally accords with
DRL process. Therefore we take advantage of
DRL. We design four automatic rewarders for the
criteria, which act as the teacher. Furthermore,
we train two generators and make them learn from
each other, which imitates the mutual learning of
students, as a step towards multi-agent DRL in lit-
erary text generation.

3 Methods

3.1 Basic Generation Model

We apply our method to a basic poetry genera-
tion model, which is pre-trained with MLE. There-
fore, we first formalize our task and introduce this
model.

The inputs are user topics specified by K key-
words,W = {wk}Kk=1. The output is a poem con-
sisting of n lines, P = L1, L2, · · · , Ln. Since we
take the line-by-line generation process, the task
can be converted to the generation of an i-th line
given previous i-1 lines L1:i−1 andW .

We use GRU-based (Cho et al., 2014) sequence-
to-sequence model.

−→
h t ,

←−
h t and st represent

the forward encoder, backward encoder and de-
coder hidden states respectively. For each topic
word wk = c1, c2, · · · , cTk

, we feed characters
into the encoder and get the keyword representa-
tion vk = [

−→
h Tk

;
←−
h Tk

], where [;] means concate-
nation. Then we get the topic representation by1:

o = f(
1

K

K∑
t=1

vk), (1)

where f defines a non-linear layer.
Denote the generated i-th line in decoder, Y =

(y1y2 . . . yTi). e(yt) is the word embedding of yt.
The probability distribution of each yt to be gen-
erated in Li is calculated by:

st = GRU(st−1, [e(yt−1); o; gi−1]), (2)

P (yt|y1:t−1, L1:i−1,W) = softmax(Wst), (3)

where W is the projection parameter. gi−1 is a
global history vector, which records what has been
generated so far and provides global-level infor-
mation for the model. Once Li is generated, it is

1For brevity, we omit biases in all equations.

updated by a convolutional layer:

at = f([st; · · · ; st+d−1]), (4)

gi = f(gi−1,
∑
t

at), g0 = 0, (5)

where 0 is a vector with all 0-s and d is convo-
lution window size. Then the basic model is pre-
trained by minimizing standard MLE loss:

LMLE(θ) = −
M∑

m=1

logP (Pm|Wm; θ), (6)

where M is data size and θ is the parameter set
to be trained.

This basic model is a modified version of (Yan,
2016). The main differences are that we replace
vanilla RNN with GRU unit, use convolution to
calculate the line representation rather than di-
rectly use the last decoder hidden state, and we
remove the polishing schema to better obverse the
influence of DRL itself. We select this model
as our basic framework since it achieves satisfac-
tory performance and the author has done thor-
ough comparisons with other models, such as (Yan
et al., 2013) and (Zhang and Lapata, 2014).

3.2 Single-Learner Reinforcement Learning
Before presenting the single-learner version of our
method (abbreviated as SRL), we first design cor-
responding automatic rewarders for the four hu-
man evaluation criteria.

Fluency Rewarder. We use a neural language
model to measure fluency. Given a poem line Li,
higher probability Plm(Li) indicates the line is
more likely to exist in the corpus and thus may
be more fluent and well-formed. However, it’s in-
advisable to directly use Plm(Li) as the reward,
since over high probability may damage diversity
and innovation. We expect moderate probabilities
which fall into a reasonable range, neither too high
nor too low. Therefore, we define the fluency re-
ward of a poem P as:

r(Li) = max(|Plm(Li)− µ| − δ1 ∗ σ, 0), (7)

R1(P) =
1

n

n∑
i=1

exp(−r(Li)), (8)

where µ and σ are the mean value and standard
deviation of Plm calculated over all training sets.
δ1 is a hyper-parameter to control the range.

Coherence Rewarder. For poetry, good coher-
ence means each line Li should be coherent with
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previous lines in a poem. We use Mutual Infor-
mation (MI) to measure the coherence of Li and
L1:i−1. As shown in (Li et al., 2016a), MI of two
sentences, S1 and S2, can be calculated by:

MI(S1, S2) = logP (S2|S1)− λlogP (S2), (9)

where λ is used to regulate the weight of generic
sentences. Based on this, we calculate the coher-
ence reward as:

MI(L1:i−1, Li) = logPseq2seq(Li|L1:i−1)

− λlogPlm(Li),
(10)

R2(P) =
1

n− 1

n∑
i=2

MI(L1:i−1, Li),

(11)

where Pseq2seq is a GRU-based sequence-to-
sequence model, which takes the concatenation of
previous i-1 lines as input, and predicts Li. A bet-
ter choice is to use a dynamic λ instead of a static
one. Here we directly set λ = exp(−r(Li)) + 1,
which gives smaller weights to lines with extreme
language model probabilities.

Meaningfulness Rewarder. In dialogue gen-
eration task, neural models are prone to generate
generic sentences such as “I don’t know” (Li et al.,
2016a; Serban et al., 2016). We observed similar
issues in poetry generation. The basic model tends
to generate some common and meaningless words,
such as bu zhi (don’t know), he chu (where), and
wu ren (no one). It’s quite intractable to quantify
the meaningfulness of a whole poem, but we find
that TF-IDF values of human-authored poems are
significantly higher than values of generated ones
(Figure 2). Consequently, we utilize TF-IDF to
motivate the model to generate more meaningful
words. This is a simple and rough attempt, but it
makes generated poems more “meaningful” from
the readers perspective.

Direct use of TF-IDF leads to serious out-of-
vocabulary (OOV) problem and high variance, be-
cause we need to sample poems during the train-
ing process of DRL, which causes many OOV
words. Therefore we use another neural network
to smooth TF-IDF values. In detail, we have:

R3(P) =
1

n

n∑
i=1

F (Li), (12)

where F (Li) is a neural network which takes
a line as input and predicts its estimated TF-IDF

value. For each line in training sets, we calculate
standard TF-IDF values of all words and use the
average as the line TF-IDF value. Then we use
them to train F (Li) with Huber loss.

Overall Quality Rewarder. The three kinds
of rewards above are all based on line-level. In
fact, human experts will also focus on discourse-
level to judge the overall quality of a poem, ig-
noring some minor defects. We train a neural
classifier to classify a given poem (in terms of
the concatenation of all lines) into three classes:
computer-generated poetry (class 1), ordinary
human-authored poetry (class 2) and masterpiece
(class 3). Then we get the reward by:

R4(P) =
3∑

k=1

Pcl(k|P) ∗ k. (13)

This classifier should be as reliable as possible.
Due to the limited amount of masterpieces, normal
classifiers don’t work well. Therefore we use an
adversarial training based classifier (Miyato et al.,
2017), which achieves F-1 0.96, 0.73, 0.76 for the
three classes respectively on the validation set.

Based on these rewarders, the total reward is:

R(P) =
4∑

j=1

αj ∗ R̃j(P), (14)

where αj is the weight and the symbol ˜ means
the four rewards are re-scaled to the same magni-
tude. As (Gulcehre et al., 2018), we reduce the
variance by:

R
′
(P) = R(P)− bu√

σ2
u + ϵ

−B(P), (15)

where bu and σu are running average and stan-
dard deviation of R respectively. B(P) is a neu-
ral network trained with Huber loss, which takes a
poem as input and predicts its estimated reward.

DRL Process. For brevity, we use Pg(·|W; θ)
to represent a basic generator and use REIN-
FORCE algorithm (Williams, 1992) to optimize
the model, which minimizes:

LDRL(θ) = −
M∑

m=1

EP∼Pg(·|Wm;θ)(R
′
(P)).

(16)

Training with solely Eq.(16) is unstable. Lack-
ing of original MLE supervisory signals, the
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Algorithm 1 Global Mutual Learning
1: Set history reward lists V1 and V2 empty;
2: for number of iterations do
3: Sample batch (Wm,Pm

g ) from training
data set;

4: for eachWm do
5: Sample Pm

1 ∼ Pg(·|Wm; θ1);
6: Sample Pm

2 ∼ Pg(·|Wm; θ2);
7: Add R(Pm

1 ) to V1, R(Pm
2 ) to V2

8: end for
9: Set LM (θ1)=L(θ1), LM (θ2)=L(θ2);

10: if mean value V2 > V1 ∗ (1 + δ3) then
11: LM (θ1)=L(θ1) +KL(Pg(θ2)||Pg(θ1));
12: else if V1 > V2 ∗ (1 + δ3) then
13: LM (θ2)=L(θ2) +KL(Pg(θ1)||Pg(θ2));
14: end if
15: Update θ1 with LM (θ1), θ2 with LM (θ2);
16: end for

model is easy to get lost and totally ignore the cor-
responding topics specified by W , leading to ex-
plosive increase of MLE loss. We use two steps to
alleviate this issue. The first one is the Teacher
Forcing (Li et al., 2017). For each W , we es-
timate E(R′

(P)) by ns sampled poems, as well
as the ground-truth Pg whose reward is set to
max(R

′
(Pg), 0). The second step is to combine

MLE loss and DRL loss as:

L(θ) = (1− β) ∗ LMLE(θ) + β ∗ L̃DRL(θ),
(17)

where ˜ means the DRL loss is re-scaled to the
same magnitude with MLE loss. Ultimately, we
use Eq.(17) to fine-tune the basic model.

3.3 Mutual Reinforcement Learning
As discussed in Section 1 & 2, to further im-

prove the performance, we mimic the mutual writ-
ing learning activity by simultaneously training
two generators defined as Pg(θ1) and Pg(θ2). The
two learners (generators) learns not only from the
teacher (rewarders) but also from each other.

From the perspective of machine learning, one
generator may not explore the policy space suffi-
ciently and thus is easy to get stuck in the local
minima. Two generators can explore along differ-
ent directions. Once one generator finds a better
path (higher reward), it can communicate with the
other and lead it towards this path. This process
could also be considered as the ensemble of dif-
ferent generators during the training phase.

Models R̃1 R̃2 R̃3 R̃4 R

Base 0.156 0.214 0.509 0.351 0.282
Mem 0.192 0.257 0.467 0.383 0.308
MRL 0.207 0.268 0.613 0.494 0.369
GT 0.582 0.609 0.625 0.759 0.649
SRL 0.169 0.228 0.563 0.432 0.321

LMRL 0.187 0.246 0.602 0.467 0.348
GMRL 0.199 0.262 0.606 0.480 0.360
MRL 0.207 0.268 0.613 0.494 0.369

Table 1: Automatic rewards of different models and
strategies. R̃1: fluency, R̃2: coherence, R̃3: mean-
ingfulness, R̃4: overall quality, R: weighted-average
reward. LMRL: local MRL, GMRL: global MRL.

We implement the Mutual Reinforcement
Learning (abbreviated as MRL) by two methods.

Local MRL. The first one is a simple instance-
based method. For the same input, suppose P1,
P2 are generated by Pg(θ1) and Pg(θ2) respec-
tively. If R(P1) > R(P2)∗(1+δ2) and R̃j(P1) >
R̃j(P2) for all j, then Pg(θ2) usesP1 instead ofP2
to update itself in Eq.(16) and vice versa. That is,
if a learner creates a significantly better poem, then
the other learner will learn it. This process gives a
generator more high-reward instances and allows
it to explore larger space along a more proper di-
rection so as to escape from the local minima.

Global MRL. During the training process, we
need to sample poems from the generator, and
hence local MRL may cause high variance. In-
stead of an instance, mutual learning can also be
applied on the distribution level. We can pull the
distribution of a generator towards that of the other
by minimizing KL divergence of them. We de-
tail this method in algorithm 1. The inner thought
is that if learner 1 is generally better than learner
2, that is, during the creating history, learner 1
achieves higher average rewards, then learner 2
should directly learn from learner 1, rather than
learn the poem itself. This process allows the gen-
erator to learn from long-period history and focus
on a higher level.

In practice, we combine these two methods by
simultaneously communicating high-reward sam-
ples and using KL loss, which leads to the best
testing rewards (Table 1).

4 Experiments

4.1 Data and Setups

Our corpus consists of three sets: 117,392 Chinese
quatrains (CQ), 10,000 Chinese regulated verses
(CRV) and 10,000 Chinese iambics (CI). As men-
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Models Bigram Ratio Jaccard
Base 0.126 0.214
Mem 0.184 0.183
MRL 0.181 0.066
GT 0.218 0.006

SRL 0.133 0.146
LMRL 0.178 0.085
GMRL 0.186 0.075
MRL 0.181 0.066

Table 2: Automatic evaluation results of diversity and
innovation. The Jaccard values are multiplied by 10 for
clearer observation. We expect higher bigram ratio and
smaller Jaccard values.

tioned, we experiment on the generation of qua-
train which is the most popular genre of Chinese
poetry and accounts for the largest part of our cor-
pus. From the three sets, we randomly select 10%
for validation. From CQ, we select another 10%
for testing. The rest are used for training.

For our model and baseline models, we run Tex-
tRank (Mihalcea and Tarau, 2004) on all training
sets and then extract four keywords from each qua-
train. Then we build four < keyword(s), poem >
pairs for each quatrain using 1 to 4 keywords re-
spectively, so as to enable the model to cope with
different numbers of keywords.

For the models and rewarders, the sizes of word
embedding and hidden state are 256 and 512 re-
spectively. History vector size is 512 and convolu-
tion window size d = 3. The word embedding is
initialized with pre-trained word2vec vectors. We
use tanh as the activation function. For other more
configurations of the basic model, we directly fol-
low (Yan, 2016).

Plm and Pseq2seq are trained with the three sets.
We train F (Li) and B(P) with the CQ, CRV and
120,000 generated poems. There are 9,465 mas-
terpieces in CQ. We use these poems, together
with 10,000 generated poems and 10,000 ordinary
human-authored poems to train the classifier Pcl.
For training rewarders, half of the generated po-
ems are sampled and the other half are generated
with beam search (beam size 20). For testing, all
models generate poems with beam search.

We use Adam (Kingma and Ba, 2015) with
shuffled mini-batches. The batch size is 64 for
MLE and 32 for DRL. For DRL, we random se-
lect batches to fine-tune the basic model. We set
δ1 = 0.5, δ2 = 0.1, δ3 = 0.001, α1 = 0.25,

Figure 2: TF-IDF distributions of poems generated by
different models. We show real TF-IDF, instead of the
estimated R̃3.

α2 = 0.31, α3 = 0.14, α4 = 0.30, ns = 4, and
β = 0.7.

A key point for MRL is to give the two pre-
trained generators some diversity, which can be
achieved by using different model structures or pa-
rameters. Here we simply initialize the generators
differently and train one of them for more epoches.

4.2 Models for Comparisons

We compare MRL2 (our model, with both local
and global mutual learning), GT (ground-truth,
namely human-authored poems), Base (the basic
model described in Section 3.1) and Mem (Zhang
et al., 2017). The Mem model is the current state-
of-the-art model for Chinese quatrain generation,
which also achieves the best innovation so far.

4.3 Automatic Evaluation

Some previous models (He et al., 2012; Zhang and
Lapata, 2014; Yan, 2016) adopt BLEU and per-
plexity as automatic evaluation metrics. Neverthe-
less, as discussed in Section 1, word-level likeli-
hood or n-gram matching will greatly diverge from
human evaluation manner. Therefore we dispense
with them and automatically evaluate generated
poems as follows:

Rewarder Scores. The four rewarder scores
are objective and model-irrelevant metrics which
approximate corresponding human criteria. They

2Due to length limit, we only display the better of the two
simultaneously trained generators. Our source code will be
available at https://github.com/XiaoyuanYi/MRLPoetry.
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Models Fluency Coherence Meaning Overall Quality
Base 3.28 2.77 2.63 2.58
Mem 3.23 2.88 2.68 2.68
MRL 4.05∗∗ 3.81∗∗ 3.68∗∗ 3.60∗∗

GT 4.14 4.11++ 4.16++ 3.97++

Table 3: Human evaluation results. Diacritic ** (p < 0.01) indicates MRL significantly outperforms baselines; ++
(p < 0.01) indicates GT is significantly better than all models.

Figure 3: Topic Distributions of different models.

can reflect poetry quality to some extent. As
shown in Table 1, on each criterion, GT gets much
higher rewards than all these models. Compared
to Base, MRL gets closer to GT and achieves
31% improvement on the weighted average re-
ward. Mem outperforms Base on the criteria ex-
cept for meaningfulness (R̃3). This is mainly be-
cause Mem generates more distinct words (Table
2), but these words tend to concentrate on the high-
frequency area, resulting in unsatisfactory TF-IDF
reward. We also test different strategies of MRL.
With naive single-learner RL, the improvement is
limited, only 14%. With mutual RL, the improve-
ment increases to 27%. Combining local MRL
and global MRL leads to another 4% improve-
ment. The results demonstrate our explicit opti-
mization (RL) is more effective than the implicit
ones and MRL gets higher scores than SRL.

Diversity and Innovation. Poetry is a kind of
literature text with high requirements on diversity
and innovation. Users don’t expect the machine
to always generate monotonous poems. We eval-
uate innovation of generated poems by distinct bi-
gram ratio as (Li et al., 2016b). More novel gener-
ated bigrams can somewhat reflect higher innova-

tion. The diversity is measured by bigram-based
average Jaccard similarity of each two generated
poems. Intuitively, a basic requirement for inno-
vation is that, with different inputs, the generated
poems should be different from each other.

As shown in Table 2, Mem gets the highest bi-
gram ratio, close to GT, benefiting from its spe-
cially designed structure for innovation. Our MRL
achieves 43% improvement over Base, compara-
ble to Mem. We will show later this satisfactory
performance may lie in the incorporation of TF-
IDF (Figure 2). On Jaccard, MRL gets the best re-
sult due to the utilization of MI. MI brings richer
context-related information which can enhance di-
versity as shown in (Li et al., 2016a). In fact,
human-authored poems often contain strong diver-
sity of personal emotion and experience. There-
fore, despite prominent improvement, there is still
a large gap between MRL and GT.

TF-IDF Distribution. As mentioned, the basic
model tends to generate common and meaningless
words. Consequently, we use TF-IDF as one of the
rewards. Figure 2 shows the TF-IDF distributions.
As we can see, Base generates poems with lower
TF-IDF compared to GT, while MRL pulls the dis-
tribution towards that of GT, making the model
generate more meaningful words and hence ben-
efiting innovation and diversity.

Topic Distribution. We run LDA (Blei et al.,
2003) with 20 topics on the whole corpus and then
inference the topic of each generated poem. Figure
3 gives the topic distributions. Poems generated by
Base center in a few topics, which again demon-
strates the claim: MLE-based models tend to re-
member the common patterns. In contrast, human-
authored poems spread on more topics. After fine-
tuning by our MRL method, the topic distribution
shows better diversity and balance.

4.4 Human Evaluation

From the testing set, we randomly select 80 sets
of keywords to generate poems with these mod-
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Figure 4: The learning curves of SRL and MRL.
Learner (generator) 2 is pre-trained for more epoches
to allow some diversity.

els. For GT, we select poems containing the given
words. Therefore, we obtain 320 quatrains (80*4).
We invite 12 experts on Chinese poetry to evaluate
these poems in terms of the four criteria: fluency,
coherence, meaningfulness and overall quality and
each needs to be scored in a 5-point scale ranging
from 1 to 5. Since it’s tiring to evaluate all poems
for one person, we randomly divide the 12 experts
into three groups. Each group evaluates the ran-
domly shuffled 320 poems (80 for each expert).
Then for each model, each poem, we get 3 scores
on each criterion and we use the average to allevi-
ate individual preference.

Table 3 gives human evaluation results. MRL
achieves better results than the other two models.
Since fluency is quite easy to be optimized, our
method gets close to human-authored poems on
Fluency. The biggest gap between MRL and GT
lies on Meaning. It’s a complex criterion involv-
ing the use of words, topic, emotion expression
and so on. The utilization of TF-IDF does amelio-
rate the use of words on diversity and innovation,
hence improving Meaningfulness to some extent,
but there are still lots to do.

4.5 Further Analyses and Discussions

In this section we give more discussions.
Learning Curve. We show the learning curves

of SRL and MRL in Figure 4. As we can see,
for SRL, the adequately pre-trained generator 2 al-

ways gets higher rewards than the other one dur-
ing the DRL training process. With the increase of
training steps, the gap between their rewards gets
larger. After several hundred steps, rewards of the
two generators converge.

For MRL, generator 2 gets higher rewards at
the beginning, but it is exceeded by generator 1
since generator 1 learns from it and keeps chas-
ing. Finally, the two generators converge to higher
rewards compared to SRL.

Case Study. We show some generated poems
in Figure 5. The Base model generates two words,
‘sunset’ and ‘moon’ in poem (1), which appear to-
gether and thus cause the conflict of time. The
word ‘fishing jetty’ is confusing without any nec-
essary explanation in the context. In contrast,
poem (2) describes a clearer scene and expresses
some emotion: a lonely man takes a boat from
morning till night and then falls asleep solitarily.

In poem (3), Mem generates some meaningful
words, such as ‘phoenix tree’, ‘wild goose’ and
‘friend’. However, there isn’t any clue to link them
together, resulting in poor coherence. On the con-
trary, things in poem (4) are tightly connected. For
example, ‘moonlight’ is related to ‘night’; ‘rain’,
‘frost’ and ‘dew’ are connected with ‘cold’.

Poem (5) expresses almost nothing. The first
two lines seem to talk about the change of time.
But the last two lines are almost unrelated to ‘time
change’. Poem (6) talks about an old poet, with the
description of cheap wine, poem and dream, ex-
pressing something about life and time. However,
the human-authored poem (7) does much better.
It seems to describe a mosquito, but in fact, it’s a
metaphor of the author himself.

5 Conclusion and Future Work

In this work, we address two substantial problems
in automatic poetry generation: lack of diversity,
and loss-evaluation mismatch, which are caused
by MLE-based neural models. To this end, we di-
rectly model the four widely used human evalu-
ation criteria and design corresponding automatic
rewarders. We use these explicit rewards to guide
gradient update by reinforcement learning. Fur-
thermore, inspired by writing theories, we pro-
pose a novel mutual learning schema to further
improve the performance. Mimicking the poetry
learning activity, we simultaneously train two gen-
erators, which will not only be taught by the re-
warders but also learn from each other. Experi-
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Figure 5: Sampled poems generated by different models. Poems between two solid lines are generated with the
same input keywords. Some defects are shown in red boxes.

mental results show our method achieves signifi-
cant improvement both on automatic rewards and
human evaluation scores, outperforming the cur-
rent state-of-the-art model3.

There are still lots to do. Can we better model
the meaningfulness of a whole poem? Can we
quantify some other intractable criteria, e.g, poet-
icness? Besides, we only tried two learners in this
work. Would the collaboration of more learners
lead to better results? How to design the methods
of communication among many generators? We
will explore these questions in the future.
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