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Abstract
Text style transfer pursues altering the style of
a sentence while remaining its main content un-
changed. Due to the lack of parallel corpora, most
recent work focuses on unsupervised methods and
has achieved noticeable progress. Nonetheless, the
intractability of completely disentangling content
from style for text leads to a contradiction of con-
tent preservation and style transfer accuracy. To
address this problem, we propose a style instance
supported method, StyIns. Instead of representing
styles with embeddings or latent variables learned
from single sentences, our model leverages the gen-
erative flow technique to extract underlying stylis-
tic properties from multiple instances of each style,
which form a more discriminative and expressive
latent style space. By combining such a space with
the attention-based structure, our model can bet-
ter maintain the content and simultaneously achieve
high transfer accuracy. Furthermore, the proposed
method can be flexibly extended to semi-supervised
learning so as to utilize available limited paired
data. Experiments on three transfer tasks, senti-
ment modification, formality rephrasing, and poet-
icness generation, show that StyIns obtains a better
balance between content and style, outperforming
several recent baselines.

1 Introduction
Text style transfer aims to endow a sentence with a differ-
ent style and meanwhile keep its main semantic content un-
altered, which could benefit various downstream applications
such as text polishing [Rao and Tetreault, 2018], poetic writ-
ing [Yi et al., 2018] and dialog generation [Zhou et al., 2018].

Owing to the lack of large parallel corpora, recent work
mainly pays attention to unsupervised transfer and generally
achieves this goal by fusing content and representations of
target styles. However, both literary theory [Embler, 1967]
and machine learning study [Lample et al., 2019] manifest
that style is coupled with content to some degree, causing a
contradiction of content preservation and style accuracy.
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In this work, we mainly study two research paradigms of
text style transfer and discuss their influence on performance.
One paradigm is a typical disentanglement approach, which
explicitly strips style from content, and then incorporates a
separated target-style representation [Shen et al., 2017; Fu et
al., 2018; John et al., 2019]. Because of the intractability of
disentanglement, specifying a target style often brings some
unexpected content attached to the source style. As a result,
this approach usually obtains high style transfer accuracy but
fails to preserve full source content.

To improve content preservation, another paradigm adopts
attention-based structures [Bahdanau et al., 2015; Vaswani
et al., 2017] to maintain all word-level source information.
Instead of disentangling, this method forces the model to fo-
cus on style-independent words by cycle reconstruction and
uses style embeddings to encourage the fusion of style-related
phrases [Lample et al., 2019; Dai et al., 2019]. Nevertheless,
for text, style is a highly complex concept involving various
linguistic features and individualities [Crystal, 1970]. It is
hard to learn expressive and flexible style embeddings to rep-
resent such a concept. Consequently, these models tend to
overemphasize content preservation and evade the difficult of
embedding learning, incurring unsatisfactory style accuracy.

Related linguistic research demonstrates that stylistic syn-
dromes can be better observed in multiple instances by mak-
ing broader comparisons [Ide, 2004]. Inspired by this idea,
we propose a style instance supported method, called StyIns,
to alleviate the contradiction mentioned above. When trans-
ferring each sentence, StyIns adopts the attention mechanism
to preserve complete source information. Then instead of us-
ing simple style embeddings, our model incorporates a set
of instances sharing the same style, and learns to extract un-
derlying stylistic properties with the powerful generative flow
technique [Rezende and Mohamed, 2015] to form a more dis-
criminative latent space. Samples drawn from this space are
fed to the decoder to strengthen style signals, yielding a bet-
ter balance between content preservation and style accuracy.
Besides, StyIns can be extended to a semi-supervised version
to utilize limited parallel data for further improvement.

In summary, our contributions are as follows:

• We propose a style instance supported method to learn a
more discriminative and expressive latent space, which
enhances style signals and makes a better balance be-
tween style transfer accuracy and content preservation.
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• Our model can flexibly switch to a semi-supervision
manner to take advantage of limited parallel data, with-
out extra parameters or structures.

• On three text transfer tasks, sentiment, formality and po-
eticness, both automatic and human evaluations demon-
strate that our model achieves better general perfor-
mance, against several recent baselines1.

2 Related Work
Style transfer has been widely explored in Computer Vision
(CV) filed [Zhu et al., 2017] but remained challenging for text
due to the discrete nature and vague style definition of lan-
guage. Without sufficient parallel text data, recent research
interests mainly concentrate on unsupervised transfer meth-
ods. According to the way of representing content and style,
we can categorize most existing models into four paradigms.

The first paradigm explicitly disentangles text as separated
content and style representations, respectively, then combines
the content with a target style to achieve transfer. Shen et
al. [2017] take a pair of adversarial discriminators to align the
source and transferred content distributions. Fu et al. [2018]
concatenate the extracted content with a learned target-style
embedding. These methods are also improved by utilizing
locally-normalized language models as discriminators [Yang
et al., 2018]. More recently, John et al. [2019] design multi-
ple losses to pack a sentence into a latent space, which is then
split into sub-spaces of content and style. Since complete dis-
entanglement is impracticable, this paradigm usually results
in satisfactory style accuracy but poor content preservation.

The second paradigm takes multi-generator structures and
generates sentences in each style with a corresponding gener-
ator. Namely, each style is implicitly represented as the gen-
erator parameters. Fu et al. [2018] make an attempt on this
paradigm and adversarially train one encoder to disentangle
content. Prabhumoye et al. [2018] utilize a back-translation
technique to translate a sentence to another language to cor-
rupt its stylistic properties. Then adversarially trained de-
coders are used to create transferred sentences in the origi-
nal language. Based on Reinforcement Learning (RL), Gong
et al. [2019] represent each transfer direction between two
styles as one encoder-decoder model, and Luo et al. [2019]
pair the two transfer directions with a dual learning schema
for further improvement. Generally, this paradigm is effec-
tive but also resource-consuming since each style or transfer
direction needs to be modelled by a separated generator.

The third paradigm is a locate-and-replace schema, which
locates style-dependent words and then replaces them with
the target-style ones. We can consider the content and style
to be represented as corresponding sets of words. Li et
al. [2018] design a delete-and-retrieve method to combine
content words in a source sentence with stylistic words in a
retrieved semantically similar sentence. Wu et al. [2019b]
mask all sentimental tokens in a source sentence, then use
a pre-trained BERT [Devlin et al., 2019] to infill target-
sentiment ones. Wu et al. [2019a] take a hierarchical RL
method, which uses two agents to locate style-related words

1Our source code is available at github.com/XiaoyuanYi/StyIns.
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Figure 1: A graphical illustration of the proposed model.

and alter the sentence, respectively. To sum up, this paradigm
is more accurate since it maintains all word-level information,
but the lack of stylistic vocabularies limits its locating perfor-
mance. Moreover, it doesn’t apply to the scenarios that styles
are expressed beyond word level, e.g., poeticness.

The last paradigm adopts one single attention-based
encoder-decoder model [Bahdanau et al., 2015] and feeds a
style embedding to the decoder to provide style signals, with-
out explicit disentanglement. Lample et al. [2019] take this
paradigm and try to control multiple attributes of text with
an attention-based LSTM model. Instead of LSTM, Dai et
al. [2019] use the more powerful Transformer [Vaswani et
al., 2017]. Such a design helps better preserve source in-
formation, avoids structural redundancy of paradigm 2, and
could cover broader cases compared to paradigm 3. Never-
theless, since the learned embedding is not expressive enough
to model the highly complex concept of style, this paradigm
usually causes unsatisfactory style transfer accuracy.

In addition, Shang et al. [2019] devise a semi-supervised
method that projects the latent spaces of different styles. De-
spite achieving further improvement, this model is sensitive
to parallel data size and not suitable for unsupervised cases.

Absorbing advantages of paradigm 1 & 4, StyIns learns a
more discriminative latent style space to better balance style
and content, and it could flexibly switch to a semi-supervised
version, compatible with a broader range of scenarios.

3 Methodology
3.1 Formalization and Overview
We first formalize the unsupervised text style transfer task.
Suppose there are M datasets {Di}Mi=1, and sentences in Di

share the same style si. Given an arbitrary sentence x with a
source style si, our goal is to rephrase x to a new one y with
a target style sj(j 6= i) while preserving its main content.

As discussed before, to produce strong style signals we
provide a set of sentences, Φj

K = {ŷk}Kk=1 ⊂ Dj , called style
instances, to represent an empirical distribution of style sj ,
which helps the model better learn underlying stylistic prop-
erties. For this sake, we incorporate a latent variable z con-
structed by these instances to represent the complex concept
of style. Since sentences of the same style are conditionally
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Algorithm 1 Training Process
1: for number of iterations do
2: Sample a source style si and a target style sj ;
3: Sample instances Φi

K from Di and Φj
K from Dj ;

4: Sample x from Di, x /∈ Φi
K ;

5: Accumulate Lrecon, Lcycle, Lstyle;
6: if y∗ exits then
7: Accumulate Lsuper;
8: end if
9: Update the parameters of G;

10: for nC steps do
11: Update the parameters of C with LC ;
12: end for
13: end for

independent w.r.t. z, we can derive a new parametric form of
text style transfer:

p(y|x,Φj
K) =

∫
p(y, z|x,Φj

K)dz

=

∫
p(y|x, z) ∗ p(z|Φj

K)dz

= Ez∼p(z|Φj
K)[p(y|x, z)].

(1)

Eq. (1) differs from previous work [Shen et al., 2017; Yang
et al., 2018] and suggests the architecture of our StyIns, as
presented in Figure 1.

Define Esrc(x) as a bidirectional LSTM encoder, called
source encoder, Esty(Φj

K) as a style encoder to model the
distribution p(z|Φj

K), and D(H, z) as a decoder with the at-
tention mechanism [Bahdanau et al., 2015]. The source en-
coder maps a given sentence x to a sequence of hidden states
H . Then the decoder generates a transferred sentence y with
H and z as inputs, where z is sampled from p(z|Φj

K). These
three components together form our generator G(x,Φj

K).

3.2 Learning Latent Style Space
The style encoder Esty(Φj

K) takes style instances as inputs,
constructs a latent style space, and then outputs a sampled
style representation z for the decoder to guide stylistic gen-
eration. Previous work [John et al., 2019] usually adopts
the Variational Auto-Encoder (VAE) [Kingma and Welling,
2014] to build latent spaces. On the basis of the mean-field
approximation, VAE assumes the independence of sentences
and allocates each a corresponding isotropic Gaussian latent
space. Despite the tractability of computation, this approach
is implausible. For one thing, the dimension-independent
Gaussian distribution is not expressive enough, which has
been explored in various work [Atanov et al., 2019]. For an-
other, sentences with the same style are not dependent but
connected by sharing one global style space.

Generative Flow
To avert these problems, we resort to the generative flow
(GF) [Rezende and Mohamed, 2015], a potent technique to
construct sophisticated distributions. Put simply, GF maps a

simple initial latent variable z0 to a complex one zT by ap-
plying a chain of parameterized mapping functions ft:

zt = ft(zt−1, c), z0 ∼ p(z0|c), t ∈ {1, 2, . . . , T}, (2)

where c is a given condition and T is the length of the chain.
GF requires each ft to be invertible and its Jacobian deter-
minant to be computable. Then we can get the probability
density of the final distribution by:

log p(zT |c) = log p(z0|c)−
T∑

t=1

log det

∣∣∣∣ dztdzt−1

∣∣∣∣ . (3)

Various choices of ft have been proposed these years. We
use a simple but effective one here, the Inverse Autoregressive
Flow (IAF) [Kingma et al., 2016]. More concretely, we have:

[mt, ot]← gt(zt−1, c), σt = sigmoid(ot), (4)
zt = σt � zt−1 + (1− σt)�mt, (5)

where � is element-wise multiplication. gt is an autoregres-
sive network, in which the i-th element of output vectors is
calculated with the first i−1 elements of zt−1. We use the
structure proposed in [Germain et al., 2015] as gt.

Style Instance Supported Latent Space
As mentioned in Sec. 3.1, to construct a more expressive la-
tent space, we discard the mean-filed assumption by utilizing
K style instances Φj

K = {ŷk}Kk=1 rather than only one single
sentence. In detail, we feed each ŷk to another bidirectional
LSTM, and represent it as vk, the concatenated final hidden
state. Then we assume the initial latent variable z0 in Eq. (2)
follows the isotropic Gaussian distribution:

z0 ∼ p(z0|Φj
K) = N (µ0, σ

2
0I), (6)

µ0 ≈
1

K

K∑
k=1

vk, σ
2
0 ≈

1

K−1

K∑
k=1

(vk − µ0)2, (7)

c = MLP (µ0), (8)

where the mean of z0 is approximated by Maximum Likeli-
hood Estimation and we use the unbiased estimator for vari-
ance. c is a global representation of Φj

K which is computed
by a Multi-Layer Perceptron (MLP) and used in Eq. (4).

With the modules introduced above, we can get an output
z of the style encoder Esty(Φj

K) by sampling z0 with Eq. (6)
and mapping it with Eq. (2). Then the sampled z is concate-
nated with the embedded word and fed to the decoder at each
time step. We will show that such a learned latent space is
highly discriminative in Sec. 4.

3.3 Unsupervised Training
Given a source sentence x, two sets of style instances, Φi

K

(x 6∈ Φi
K) and Φj

K , with the source style si and the target style
sj , we adopt the following losses to create indirect signals.

Reconstruction Loss. This loss is used by different
paradigms of model [Shen et al., 2017; Luo et al., 2019;
Wu et al., 2019b], which requires the model to reconstruct
the given sentence with source-style signals:

Lrecon = − log pG(x|x,Φi
K). (9)
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Cycle Consistency Loss. Cycle consistency is first applied
to image style transfer [Zhu et al., 2017] to strengthen content
preservation and then also adopted for text [Dai et al., 2019;
Lample et al., 2019]. We transfer a source sentence in two
directions with the support of instances in different styles:

Lcycle =− log pG(x|y,Φi
K), y ← G(x,Φj

K). (10)

Note that in each iteration, we provide different sampled
instances to help StyIns better generalize stylistic properties.

Adversarial Style Loss. Without any parallel corpus, adver-
sarial training [Goodfellow et al., 2014] is utilized to build
style supervision. Following [Dai et al., 2019], we use a
classifier with M+1 classes as the discriminator C to tell the
style of an input sentence (M+1-th class indicates a generated
fake). The generator is expected to fool the discriminator by:

Lstyle =− log pC(j|y), (11)

and the discriminator is alternately optimized by:

LC =−[log pC(i|x)+log pC(i|x̂)+log pC(M+1|y)], (12)

where x̂← G(x,Φi
K).

3.4 Semi-Supervised Training
Our method can be regarded as the construction of target-style
information with the support of style instances. When the
ground truth y∗ 6∈ Φj

K is available, we can create supervision
by maximizing log p(y∗|x,Φj

K). We drive a lower bound as:

log p(y∗|x,Φj
K) ≥ Eq(z|y∗,Φj

K)[log p(y∗|z, x)]

−KL[q(z|y∗,Φj
K)||p(z|Φj

K)].
(13)

Based on this lower bound, we get the final supervised loss:

Lsuper = −α ∗ Eq(z|y∗,Φj
K)[log p(y∗|z, x) + log p(z|Φj

K)

− log q(z|y∗,Φj
K)] + β ∗ Eq(z|Φj

K)[− log p(y∗|z, x)],

(14)

where α and β are hyper parameters to re-scale the loss.
By optimizing Eq. (14), we simultaneously maximize a

lower bound of log p(y∗|x,Φj
K) and minimize an upper

bound of −log p(y∗|x,Φj
K) (the second term in Eq. (14)).

The KL term, which is approximately estimated with Eq. (3),
could benefit alignment of latent style distributions learned
with/without ground truth, and thus helps better extract com-
mon stylistic properties. We describe the complete training
process in Algorithm 1.

4 Experiments
4.1 Datasets
We conduct experiments on three text style transfer tasks.

Sentiment Modification. We use the Yelp dataset pro-
cessed by [Li et al., 2018], which consists of restaurant re-
views with two sentiments, namely negative and positive.

Dataset Styles Paired Unpaired
Train Valid Test Train Valid

Yelp Neg. N/A N/A 500 180k 2,000
Pos. 500 270k 2,000

GYAFC Inf. 52k 2,788 1,332 N/A N/AFor. 52k 2,247 1,019

CPVT Ver. 4k 1,000 2,000 200k 10k
Poe. 4k 1,000 2,000 200k 10k

Table 1: Data Statistics.

Formality Rephrasing. The recently released dataset
GYAFC [Rao and Tetreault, 2018] contains paired formal
and informal sentences in two domains. We use the Family &
Relationships domain.

Poeticness Generation. We also consider Chinese poetic-
ness generation, as in [Shang et al., 2019], which seeks to
transfer a vernacular sentence to a classical poetic one. As
Chinese vernacular text and classical poetry share similar vo-
cabulary, differences between them, e.g., grammar and syn-
tax, lie beyond simple word usage. Hence, this task is more
challenging than the above two. We build a corpus called
Chinese Poetic and Vernacular Text (CPVT) with vernac-
ular sentences from Chinese prose and poetic sentences from
classical poems. Besides, we collect 7,000 pairs of human-
authored sentences for testing and semi-supervised training.
We only evaluate the transfer direction from vernacular to po-
etic. Since the opposite direction is more difficult requiring
more sophisticated structures, we leave it for future work.

We use Yelp and GYAFC for unsupervised transfer; CPVT
and GYAFC for semi-supervised transfer. English sentences
are tokenized with the NLTK tool, and Chinese sentences are
segmented as Chinese characters. All digits are replaced with
a <NUM> symbol. Table 1 presents detailed data statistics.

4.2 Setups
We set word embedding size, hidden state size, the number of
style instances K and the length of generative flow chain T
to 256, 512, 10 and 6 respectively. The encoder and decoder
share the same word embedding. The prior and posteriori dis-
tributions of z in Eq. (13) share parameters to reduce model
size. The discriminator is a Convolutional Neural Network
(CNN) based classifier with Spectral Normalization [Miyato
et al., 2018]. To handle the discrete nature of sentences, as
in [Dai et al., 2019], we multiply the softmax distribution by
the word embedding matrix, to get a soft generated word and
feed this weighted embedding to the discriminator. Adam
with mini-batches (batch size=64) is used for optimization.

4.3 Baselines
We conduct comprehensive comparisons with several state-
of-the-art style transfer models. For unsupervised transfer, we
consider CrossAlign [Shen et al., 2017], MultiDec [Fu et al.,
2018], DelRetri [Li et al., 2018], Template [Li et al., 2018],
Disentangled [John et al., 2019] and StyleTransformer [Dai et
al., 2019]. These models cover the four paradigms described
in Sec. 2. We emphasize Disentangled and StyleTransformer
(abbreviated as Disent. and StyleTr.) as the representatives

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)

3804



Models Acc↑ BLEU↑ Cos↑ PPL↓ GM↑ Acc↑ BLEU↑ Cos↑ PPL↓ GM↑
Yelp (Unsupervised) GYAFC (Unsupervised)

MultiDec [Fu et al., 2018] 46.0 15.09 91 175 10.52 24.9 11.53 91 97 8.69
CorssAlign [Shen et al., 2017] 73.2 9.41 90 76 10.94 66.8 3.18 88 35 8.52
DelRetri [Li et al., 2018] 88.5 16.61 93 136 12.92 61.1 21.20 91 110 12.58
Template [Li et al., 2018] 81.6 22.62 92 296 13.14 49.2 34.75 94 249 13.06
Disentangled [John et al., 2019] 91.7 6.71 89 26 11.39 67.5 8.16 90 24 11.18
StyleTransformer [Dai et al., 2019] 86.2 27.45 96 231 14.29 63.1 40.91 95 180 14.74
StyIns (Ours) 90.8 26.03 96 109 14.83 67.8 46.73 96 92 16.11

Models CPVT (Semi-Supervised 1k) GYAFC (Semi-Supervised 2.5k)
CPLS [Shang et al., 2019] 99.0 0.77 89 329 5.85 71.2 36.99 93 41 16.03
StyIns (Ours) 97.4 3.74 95 443 8.68 68.0 47.30 96 93 16.16
Models CPVT (Semi-Supervised 4k) GYAFC (Semi-Supervised 10k)
CPLS [Shang et al., 2019] 98.3 3.13 90 283 8.37 71.4 39.25 94 44 16.24
StyIns (Ours) 97.5 4.00 95 410 8.86 70.6 47.81 96 92 16.36

Table 2: Automatic evaluation results of unsupervised transfer and semi-supervised transfer with different numbers of paired data.

Models Yelp GYAFC
Sty. Con. Flu. Sty. Con. Flu.

DelRetri 3.26 3.24 3.46 2.31 2.37 2.39
Template 3.03 3.34 3.12 2.16 3.56 2.97
Disent. 3.95 3.20 4.46 2.84 1.85 3.79
StyleTr. 3.51 4.35 3.78 3.03 3.27 3.14
StyIns 4.52∗ 4.41∗ 4.41 3.97∗ 4.41∗ 4.48∗

(a) Unsupervised transfer of sentiment and formality.

Models Sty. Con. Flu
CPLS 3.13 2.18 2.41
StyIns 2.82 3.67∗ 2.91∗

(b) Semi-supervised transfer of poeticness with 4k paired data.

Table 3: Human evaluation results. The Krippen-dorff’s alpha of
human rating is 0.64, indicating acceptable inter-annotator agree-
ment. The diacritic ∗ (p < 0.01) represents that StyIns significantly
outperforms baseline models.

of paradigms 1 & 4 respectively. For semi-supervised trans-
fer, we compare CPLS [Shang et al., 2019], which is the only
one semi-supervised transfer model to our best knowledge.

4.4 Metrics
We consider three criteria: Style Transfer Accuracy (Sty.),
Content Preservation (Con.) and Fluency (Flu.).
Automatic Evaluation. Following previous work [Fu et
al., 2018; Luo et al., 2019; John et al., 2019; Dai et al.,
2019], we use a classifier’s accuracy (Acc) to measure style
accuracy. For Yelp and GYAFC, we fine-tuned a pre-trained
BERT [Devlin et al., 2019] with each dataset. For CPVT, we
train a CNN-based classifier. The three classifiers achieve
98%, 88% and 98% accuracy, respectively. The BLEU
score between transferred sentences and human-authored ref-
erences, and the cosine distance (Cos) between the source
and transferred embeddings [Fu et al., 2018], are utilized to
measure content preservation. Cos is multiplied by 100 to
match the scale of other metrics. We train a 5-gram language
model KenLM [Heafield, 2011] with sentences of each style,
and measure fluency by perplexity (PPL) of transferred sen-

tences. We also report the geometric mean (GM) of Acc,
BLEU, Cos and 1

log PPL as the overall performance.

Human Evaluation. We conduct human rating on our
StyIns and four baselines with the highest GM scores under
automatic metrics. Due to the limitation of manual labour in-
volved, we access unsupervised results of Yelp and GYAFC,
and semi-supervised results of CPVT. For each model with
each transfer direction, we sample 50 sentences and get 1,100
generated sentences in total. We invite three annotators to
evaluate in a blind review manner. Each of the three criteria
is scored on a 5-point scale ranging from 1 (worst) to 5 (best).

4.5 Experimental Results
As shown in Table 2 (upper part), our model achieves the
best overall performance (GM). Disentangled gets satisfac-
tory accuracy and PPL on both Yelp and GYAFC datasets,
but performs worse for other metrics. These models belong-
ing to paradigm 1 (e.g., Disentangled and CrossAlign) try to
separate content and style. However, as discussed in Sec. 1
& 2, due to the intractability of disentanglement, specifying
one style may also drag some attached content out from the
content space, resulting in fluent transferred sentences with
the desired style but irrelevant phrases. On the contrary,
StyleTransformer is better at content preservation, benefiting
from its powerful attention structures. Nevertheless, the sim-
ple style embedding hinders this model from higher transfer
accuracy. Moreover, we can found our StyIns also outper-
forms StyleTransformer on BLEU and Cos for GYAFC. With
less data, the complicated Transformer can’t be adequately
trained, while our model is relatively insensitive to data size.

Table 2 (lower part) gives the results of semi-supervised
transfer. Our model gets better overall results and excels at
content preservation, while CPLS performs better in style
control. CPLS also achieves lower PPL. The reason lies in
that CPLS adopts multiple decoders, but our model only con-
tains one decoder. With more paired data, both CPLS and
StyIns obtain further improvement. Besides, CPLS is more
sensitive to the size of parallel data on BLEU but not on ac-
curacy, opposite to our model. Take poeticness transfer as
an example. When the number of paired data increases from
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Figure 2: (a) Visualization of data points and samples from the latent style space on Yelp with t-SNE. (b) The logarithm of the number
of transferred sentences in different ranges of style accuracy and sentence-BLEU. We present those with accuracy≥0.2 on Yelp. (c) The
geometric mean of Acc, BLEU and 1

log PPL on Yelp with different numbers of style instances. (d) Transferred samples from the three datasets.
Phrases with different styles are marked in blue and red. Brown words are content irrelevant to source sentences.

1k to 4k, CPLS quintuples its BLEU score, but our model
gets limited improvement. Please note that our model is suit-
able for both unsupervised and semi-supervised cases, while
CPLS can be applied to semi-supervised transfer only.

Table 3 presents human evaluation results. Again, Style-
Transformer gets worse style accuracy but better content
preservation than Disentangled. In addition, StyIns achieves
comparable or even better fluency compared to baselines un-
der human rating. This result indicates that overly low PPL
may be obtained by ignoring the required content, and a mod-
erate PPL value is enough to reflect acceptable fluency.

4.6 Further Analysis
In Figure 2 (a), we vectorize sentences by a pre-trained Au-
toEncoder and the LSTM in our style encoder (Esty), respec-
tively. We can observe that the former fails to distinguish dif-
ferent sentiments while our style encoder can separate these
data points to some extent. We also visualize samples from
the latent style space of StyIns. Compared to original sen-
tence representations, this space is much more discriminative,
which could produce flexible and strong style signals.

In Figure 2 (b), we plot the accuracy and sentence-BLEU
(calculated with NLTK) of sentences transferred by different
models. We can see for Disentangled, sentences fall in a low-
BLEU and high-Acc area. For StyleTransformer, more sen-
tences spread in the lower-Acc region compared to StyIns.
Such results manifest that StyIns makes a better balance be-
tween style accuracy and content preservation.

In Figure 2 (c), we investigate the effect of different num-
bers of style instances K. We found when we use a small K
(e.g., 4) in the training phase, setting differentK in the testing
phase makes a negligible difference. When we use a larger
K in training, it’s a better choice to take the same one for
testing. In general, increasing K could facilitate the learning
of latent style space and hence leads to better performance,
which could support our claim that the independent assump-
tion of sentences mentioned in Sec. 3.2 is implausible. How-
ever, larger K also requires more resources and slows down
the training. As a compromise, we set K=10.

Figure 2 (d) shows some transferred samples from differ-

ent datasets. We can see that Disentangled creates quite fluent
sentences in apparent target style, but often loses source infor-
mation, as discussed before. On Yelp, StyleTransformer can
copy most style-independent source phrases but sometimes
fails to generate required stylistic words. On the contrary,
our StyIns makes a better balance on the two criteria. On
CPVT, we can observe more interesting results. As discussed
in Sec. 4.1, expressed beyond the use of stylistic words, poet-
icness is a more complex style than sentiment. CPLS chooses
to sidestep this obstacle at times by generating fluent but irrel-
evant phrases. Our model, by contrast, learns to delete some
vernacular words and reorder the remaining ones to better
meet the syntactic requirements of classical poetry.

5 Conclusion and Future Work
In this work, we propose a style instance supported method,
StyIns, to alleviate the contradiction of content preservation
and style accuracy in text style transfer tasks. StyIns adopts
the generative flow technique to construct a more discrimi-
native and expressive latent style space with the support of
multiple style instances, which provides strong style signals
to an attention-based decoder. Besides, our model can be flex-
ibly extended to the semi-supervised version to utilize limited
parallel data for further improvement. Experiments on three
transfer tasks show that our model achieves a better balance
between content and style, against several state-of-the-arts.

We plan to explore few-instance text style transfer, in
which case a new style and a few instances of it are avail-
able only in the testing phase. Without explicitly defined style
categories, our model possesses the potential to achieve such
transfer. We highlight this task and leave it for future work.
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